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CONTRIBUTIONS OF THE DISSERTATION 

The dissertation focuses on researching the construction of an autonomous 

control system for electric wheelchairs in indoor environments, based on the 

integration of EEG brain signals, camera systems, landmarks, and maps to reduce 

the level of control required by people with disabilities and enhance safety. 

Therefore, the new scientific contributions of the dissertation include: 

1. Proposing a method for classifying EEG signals of eye-blink activities 

based on amplitude thresholding and a classification method using a 1D 

convolutional neural network (CNN-1D). Specifically, EEG signals of eye-blink 

activities are collected and preprocessed for the classification process. The 

amplitude thresholding classification method allows direct processing of EEG 

signals with short processing time and high accuracy. With the CNN-1D model, 

data needs to be collected beforehand for the training process. However, the 

CNN-1D network allows the classification of various types of eye blinks with 

higher accuracy. 

2. Proposing a method for recognizing natural landmarks and determining 

their positions in indoor environments. During movement, with this method, 

landmarks do not need to be pre-learned; the wheelchair will autonomously 

recognize and select landmarks based on the feature density of objects in the 

environmental image. Subsequently, the wheelchair will calculate the position of 

the landmarks and then store them in the database. The process of collecting 

landmarks and their position information is performed quickly with high 

accuracy, forming the basis for wheelchair localization on the map. 

3. Leveraging landmark information, the dissertation suggests a method 

for wheelchair localization on a virtual 2D grid map, facilitating accurate and 

swift wheelchair navigation to desired destinations. Specifically, by constructing 

a virtual 2D grid map from the real environment with empty and obstacle cells, 

the wheelchair needs to be localized for the proposed control system to find the 

optimal path to the destination. This position is calculated from the position of 

the landmark in the environmental space and in the 3D space of the camera. Using 

a single landmark for wheelchair localization is recommended for higher 

accuracy compared to using three landmarks. 

4. Proposing a real-virtual control model for autonomous electric 

wheelchairs. The DQNs-PreLU model is recommended for training to find the 

optimal path for the wheelchair based on the virtual 2D grid map. The DQNs-

PreLU model with selected parameters helps reduce training time while 

maintaining high accuracy. Furthermore, a control algorithm for wheelchairs in 

real environments derived from simulated paths on the grid map is also proposed.
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CHAPTER 1: INTRODUCTION 

1.1. Rationale of the research 

In today's society, individuals with disabilities consistently encounter 

physical and mental challenges, with global statistics from the World Health 

Organization (WHO) in 2022 revealing that 16% of the world's population, 

equivalent to 1.3 billion people, are living with disabilities, a number on the rise 

[1]. In Vietnam, as of 2019, approximately 6.2 million people, constituting 7.06% 

of the population aged 2 and above, are reported to have disabilities, with 58% 

being female, 28.3% children, and nearly 29% having severe or profound 

disabilities [2]. Worldwide, around 7% of individuals with mobility disabilities 

rely on wheelchairs [3]. The electric wheelchair market generated 2.89 billion 

USD in revenue in 2021 and is anticipated to reach 5.27 billion USD, reflecting 

a growth of about 10.76% from 2022 to 2027 [4]. 

❖ Scientific publications 

In Dr. Nguyen Thanh Hai's 2013 research project, 'Development of an 

Intelligent Electric Wheelchair using EEG Brainwave Technology and Camera 

Sensors for Severely Disabled Individuals,' an autonomous wheelchair model 

was created, featuring an EEG brainwave-controlled interface and an automatic 

obstacle avoidance system [5]. Dr. Lam Quang Chuyen's 2020 doctoral 

dissertation, 'Neural Network in the Control System of Wheelchairs for Severe 

Disabilities Using Electroencephalography (EEG) and Camera,' explored three 

EEG signal preprocessing methods: Fourier transform, Wavelet transform, and 

Hilbert Huang transform (HHT). These methods transformed signals into Delta, 

Theta, Alpha, Beta, and Gamma waveforms, followed by data clustering and 

input into a neural network for classifying five motion signals [6]. The best result 

achieved was 92.4% accuracy with the group of 20 individuals selected for the 

experiment. 

In a 2016 study, Ana Lopes introduced a model suggesting shared control 

between the Brain-Computer Interface (BCI) P300 communication system and a 

planning algorithm to oversee real-time control of electric wheelchairs in real-

world indoor environments [7]. Similarly, in another 2016 study by Zhijun Li, a 

human-machine control approach was proposed, integrating both Brain-

Computer Interface (BCI) and automatic control modes to regulate wheelchair 

direction [8]. Jingsheng Tang, in his 2018 research, presented an enhanced 

mobile structure for wheelchairs, featuring a lightweight robotic arm, target 

recognition module, and automatic control module [9]. 

1.2. Research objectives 

The dissertation aims to develop an autonomous control system for electric 

wheelchairs indoors, integrating EEG signals, cameras, landmarks, and maps to 
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minimize user input and improve safety for individuals with disabilities. To 

achieve this main goal, specific objectives need to be accomplished: 

1. Design an interface for communication between humans and computers 

using EEG signals from eye-blink activities to select desired destinations. 

2. Propose a method for locating the electric wheelchair on a map based on 

the positions of landmarks in the environment. To achieve this, landmarks with 

their location information in the environment need to be collected. Therefore, a 

method for recognizing landmarks in the natural environment and determining 

their positions needs to be investigated. 

3. Develop an autonomous control model for the wheelchair to reach the 

desired destination, minimizing the user's control involvement. 

1.3. Problem and scope of research 

❖ Problem: 

- Researching methods for classifying eye-blink activities from EEG signals. 

- Investigating algorithms for landmark recognition in natural environments. 

- Exploring algorithms for positioning based on landmarks in natural 

environments. 

- Studying automatic control algorithms for wheelchairs based on the integration 

of EEG signals, landmarks, and maps. 

❖ Research Scope: The dissertation concentrates on the research of the 

control system for electric wheelchairs in indoor environments, targeting users 

with limited mobility in their hands, legs, or heads, while their eyes remain 

functional. 

1.4. Scientific contributions and practical significance 

❖ Scientific contributions 

- Proposing a method for classifying EEG signals of eye-blink activities based 

on amplitude thresholding and a classification method using a 1D convolutional 

neural network (CNN-1D). 

- Proposing a method for recognizing natural landmarks and determining their 

positions in indoor environments. 

- Leveraging landmark information, the dissertation suggests a method for 

wheelchair localization on a virtual 2D grid map, facilitating accurate and swift 

wheelchair navigation to desired destinations. 

- Propose a hybrid control model for autonomous electric wheelchairs, 

employing the DQNs-PreLU model to train optimal paths on a virtual 2D grid 

map. Implement a control algorithm for real environments derived from 

simulated paths on the grid map. 

❖ Practical significance 

The dissertation is practically significant in developing an autonomous 

electric wheelchair model for individuals with disabilities. Furthermore, the 

research findings are applicable for instructing students in the field of Biomedical 
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Engineering at Ho Chi Minh City University of Technology and Education. 

CHAPTER 2: THEORETICAL FOUNDATIONS 

2.1. Overview of EEG Signals 

EEG is the electrical signal of brain activity, measured using instruments 

that record electric currents with electrodes attached to the head. The recorded 

electrical fluctuations correspond to the brain's activities, and these activities are 

related to signals from the cerebral cortex [10]. 

2.2. Classification of Activities Based on EEG Signals 

2.2.1. Detection of Eye Activities Based on Amplitude Thresholding of EEG 

Signals [11, 12] 

2.2.2. Classification of Eye Activities Using Neural Networks [6, 13] 

2.2.3. EEG Signal Classification Using Convolutional Neural Network [14, 15] 

2.3. Brain-Computer Interface (BCI) 

Brain-Computer Interface (BCI) is becoming increasingly popular as a 

technology to assist and enhance human communication abilities [16] [17]. 

2.4. Electric Wheelchair Model for People with Disabilities 

2.4.1. Smart Electric Wheelchair [18, 19] 

2.4.2. Electric Wheelchair with Robotic Control System [20]  

2.4.3. Integrated Electric Wheelchair with Smart Environment [21] 

2.4.4. Electric Wheelchair with Obstacle Avoidance Feature [22] 

2.4.5. Shared Control System for Electric Wheelchairs [23, 24] 

2.5. Method for Constructing a 2D Grid Map for Indoor Robot Navigation 

A 2D grid map is one of the crucial methods for representing the 

environment in the field of mobile robotics. The grid map divides the space into 

multiple grids with attributes such as uncertainty, free space, and obstacles [25]. 

2.6. Localization Methods for Mobile Robots 

2.6.1. Position Estimation Methods [26, 27] 

2.6.2. Landmark-Based Robot Localization Methods [28] 

2.6.3. Localization Methods for Robots Using WIFI Systems [29] 

2.7. Object Recognition Methods 

2.7.1. Appearance-Based Recognition Methods [30] 

2.7.2. Feature-Based Recognition Methods [31, 32] 

2.7.3. Object Recognition Using Machine Learning Methods [33, 34] 

2.8. Modeling and Control of Electric Wheelchairs 

2.8.1. Dynamic Modeling [35] 

2.8.2. Motion Control of Electric Wheelchairs 

2.9. Path Planning Methods for Mobile Robots 

2.9.1. Algorithm A* (A-star) [36] 

2.9.2. Reinforcement Learning Methods [37, 38] 
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CHAPTER 3: CLASSIFYING EEG SIGNALS FROM EYE ACTIVITY 

FOR HUMAN-COMPUTER COMMUNICATION APPLICATIONS 

3.1. EEG signals from eye blinking activity 

There are three types of eye blinking: reflexive blinking, involuntary 

blinking, and voluntary blinking. The EEG signals of voluntary and involuntary 

eye blinking are illustrated in Figure 3.3. 

  
(a) Voluntary eye blinking signals (b) Involuntary eye blinking signals 

Figure 3.3. Two types of EEG signals from eye blinking activity. 

3.2. Data collection 

The eye blinking signals are collected from 4 channels: AF3, F7, F8, and 

AF4. Each signal has a length of 701 samples. The data collection process is 

illustrated in Figure 3.6. 

 
Figure 3.6. Experimental procedure. 

3.3. Signal Processing 

3.3.1. Filtering noise using a Hamming filter 

The original signal will be passed through a Hamming filter. Figure 3.12 

represents the filtered results of the original EEG signal using a Hamming filter. 

3.3.2. Smoothing the signal using a Savitzky–Golay filter 

The EEG signal before 

and after smoothing using a 

second-order Savitzky–Golay 

filter is presented in Figure 

3.13. Figure 3.14 shows the 

smoothed EEG signal of eye 

blinking activity using a 

second-order Savitzky–Golay 

filter with window lengths of 

7, 11, and 15. 
 

Figure 3.12. The EEG signal from channel F7 during 

left eye blinking activity before and after filtering 

using a Hamming filter. 
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Figure 3.13. The EEG signal at 

channel F7 before and after smoothing 

with a Savitzky-Golay filter. 

Figure 3.14. The EEG signal from both eye blinking 

activity at channel F7, filtered with a Hamming filter 

and smoothed using a Savitzky-Golay filter. 
3.4. Classification of EEG signals from eye activity 

3.4.1. Eye blinking activity classification through amplitude thresholding 

❖ Amplitude thresholding method 

The eye blinking signals will be segmented into frames as shown in Figure 

3.15. The voluntary eye blinking signals exhibit characteristics as illustrated in 

Figure 3.16, including positive and negative peaks [39]. 

 

Algorithm 3.1: Blink detection 

1: 

 

 
 

 
 

Input: 

- Y[n]: processed EEG signal for a frame 

- TAP: amplitude threshold for positive pulse 
- TAN: amplitude threshold for negative 

pulse 
- TWP: width threshold for positive pulse 

- TWN: width threshold for negative pulse 

2: for n = 1: N do 

3: if 𝑌[𝑛] ≥ 𝑇𝐴𝑃then
 4: 𝑇𝑖𝑚𝑒𝑟_𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + + 

5: else if 𝑌[𝑛] ≤ 𝑇𝐴𝑁then
 6: 𝑇𝑖𝑚𝑒𝑟_𝑐𝑜𝑢𝑛𝑡_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + +

 7: end for 

8: 𝑊𝑃 = 𝑇𝑖𝑚𝑒𝑟_𝑐𝑜𝑢𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑊𝑁 = 𝑇𝑖𝑚𝑒𝑟_𝑐𝑜𝑢𝑛𝑡_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

9: if 𝑊𝑃 ≥ 𝑇𝑊𝑃 then 

10: 𝑝𝑒𝑎𝑘+ = 1 

11: end if 

12: if 𝑊𝑁 ≥ 𝑇𝑊𝑁and 𝑝𝑒𝑎𝑘+ = 1then 

13: Blink 

 Else 

 Not blinking 
14: end if 

15: Output: Blinking activity. 
 

Figure 3.15. Description of the method 

for segmenting EEG signals into data 

frames. 

 
Figure 3.16. Description of voluntary eye 

blinking signals. 

If Y[n] is referred to as the EEG signal of a frame, then the thresholds TAP 

and TAN are computed using the following formulas: 

𝑇𝐴𝑃 =
𝑚𝑎𝑥(𝑌[𝑛])+𝑚𝑖𝑛(𝑌[𝑛])

2
 , 𝑣ớ𝑖 𝑌[𝑛] ≥ 0  (3.11) 

𝑇𝐴𝑁 =
𝑚𝑎𝑥(𝑌[𝑛])+𝑚𝑖𝑛(𝑌[𝑛])

2
 , 𝑣ớ𝑖 𝑌[𝑛] < 0  (3.12) 

Algorithm 3.1 describes the method for detecting eye blinking activity. 
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❖ Classification results of blink activity based on amplitude threshold 

Table 3.1. Cases of eye activity classification. 

No. 

Blinking 

at 

channel 

F7 

Blinking 

at 

channel 

F8 

Type of eye 

activity 

1 Yes No 
Left eye 

blink 

2 No Yes 
Right eye 

blink 

3 No No Not blinking 
 

 

Figure 3.17. 

Result of eye 

activity 

classification. 
Post-preprocessing, signals from F7 and F8 electrodes will identify left and 

right eye blinks according to Table 3.2. Classification results encompass left eye 

blinks, right eye blinks, and no blinks, illustrated in Figure 3.17. 

3.4.2. Classifying eye activity signals using a 1D CNN model 

❖ Creating a database 

Figures 3.19, 3.21, 3.23, 3.25, and 

3.27 depict synthesized signals from 4 

channels (AF3, F7, F8, and AF4) 

containing 2804 samples, representing 

activities like left eye blinking, right eye 

blinking, both eyes blinking, both eyes 

blinking consecutively twice, and no 

blinking. These signals will be stored in 

the dataset for classification training. 

 
Figure 3.19. The signal synthesized from 4 

channels, with a length of 2804 samples, 
represents the left eye blinking activity. 

  
Figure 3.21. The signal synthesized from 4 channels, 

with a length of 2804 samples, represents the right eye 

blinking activity. 

Figure 3.23. The signal synthesized from 4 

channels, with a length of 2804 samples, 

represents the activity of both eyes blinking. 

  
Figure 3.25. The signal synthesized from 4 channels, 
with a length of 2804 samples, represents the activity 

of both eyes blinking consecutively twice. 

Figure 3.27. The signal synthesized from 4 
channels, with a length of 2804 samples, 

represents the activity of no blinking. 
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❖ CNN-1D model 

This study proposes a CNN-1D model with a structure as shown in Figure 

3.28. The parameters and kernel sizes were determined through trial and error. 

 
Figure 3.28. The CNN-1D model for classifying EEG signals related to eye activity. 

❖ Evaluation methods for the classification model 

In this dissertation, a confusion matrix is used to assess the accuracy of the 

classification model, as shown in Figure 3.29. 

❖ Classification results of EEG signals using the CNN-1D model 

Training data for the model, categorizing eye activities, is partitioned based 

on the ratios illustrated in Figure 3.30. Table 3.3 furnishes detailed data 

distribution for training and testing across various training scenarios. 

  
Figure 3.29. Confusion matrix. Figure 3.30. Organization of data for training 

Table 3.3. Description of the training data for eye activity classification. 

Various types 

of eye activities 

Number of training data Number of test data 

L R B DB N L R B DB N 

L-R-N 240 240   240 60 60   60 

L-R-B-N 240 240 240  240 60 60 60  60 

L-R-B-DB-N 240 240 240 240 240 60 60 60 60 60 

Figure 3.31 illustrates the training performance of the classification model 

for three blinking cases. Table 3.4 provides detailed performance descriptions of 

the CNN-1D model for various scenarios. 

   
(a) Three types of eye blinks (b) Four types of eye blinks (c) Five types of eye blinks 

Figure 3.31. The training performance of the CNN-1D model for eye activity classification. 
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Table 3.4. Performance of the model during 

training for the classification of eye activities. 

 

Table 3.5 and Figure 3.3 detail the 

performance of the model with EEG 

signals individually collected from 4 

channels without signal fusion [40]. 
Table 3.5. Five-fold cross-validation for 

the eye blink activity classifier. 

 

Results of eye blink classification 

as shown in Figure 3.32 and 3.33. 

    
(a) Three types of blinks (b) Four types of blinks 

 
(c) Five types of blinks 

Figure 3.32. Classification results of eye 

activities by the model on the test set. 

 

Figure 3.33. 

Classification 

results of eye 

activities with left 

and right eye blinks 

using the unfused 

channel signals. 

Table 3.6 compiles the results of recent studies on eye activity classification 

using EEG. 
Table 3.6. Studies on eye activity classification. 

Works Type of eye activity Classification 

technique 

Accuracy 

Dang-Khoa 

Tran [11] 

Left eye blink 
Right eye blink 

Blinking with both eyes 

Peak threshold 95,1% 
96,1% 

97,2% 

Kleifges K [41] Blinking Peak threshold 93,46% 

M. Benda [42] Blinking Alpha peak 

detection 

89.69% 

Thanh-Hai 

Nguyen [13] 

Open eyes 

Blinking with both eyes 

Left-eye squint 
Right-eye squint 

Neural network 

(NN) 

90% 

97% 

92% 
95% 

Proposed 

method 1 

Left eye blink 

Right eye blink 
No blinking 

Amplitude threshold 97% 

99% 
82% 

Proposed 

method 2 

Left eye blink 

Right eye blink 

Blinking with both eyes once 
Blinking with both eyes twice 

No blinking 

CNN-1D 98,1% 

100% 

95,9% 
100% 

98,1% 
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CHAPTER 4: RECOGNITION AND POSITIONING OF NATURAL 

LANDMARKS IN INDOOR ENVIRONMENTS 

4.1. The role of landmarks in the localization and control of electric 

wheelchairs 

With mobile platforms, selecting landmarks and extracting their features for 

recognition plays a crucial role. 

4.2. The maximum feature density method for recognizing landmarks in 

natural environments 

To recognize natural 

landmarks in an image, the 

maximum feature density 

method is divided into three 

stages, as illustrated in 

Figure 4.1 [43]. 

4.2.1. Feature extraction 

To detect keypoints, the ORB detector is applied to accelerate feature 

extraction [44]. 

4.2.2. Connecting keypoints within objects 

The keypoints of the object in the image are connected by dilating them. 

Specifically, the dilation of a binary image A with a structuring element K is 

performed, calculated as follows: 

𝑫 = 𝑨 ⊕ 𝑲 = {𝑧 |(𝑲
∧

)
𝑧

∩ 𝐴 ≠ 𝛷} (4.2) 𝑲 = [
0 1 0
1 1 1
0 1 0

]  (4.3) 

where (𝑲
∧

)
𝑧
 is the projection of K from the origin and translated along Z. 

Therefore, the dilation of A with K is the set of all Z projections, such that (𝑲
∧

)
𝑧
 

and A overlap at least one element. 

4.2.3. Recognizing natural landmarks 

The dilated image D is processed to contain only 2 values, 0 and 1, and the 

sum of white pixels along row r and column c is determined according to formula 

(4.4). The sum of white pixels within the objects of the image Oi after drawing 

boundaries is calculated using formula (4.5). 

𝜒 = ∑ ∑ 𝑫(𝑥, 𝑦)𝑐
𝑦=0

𝑟
𝑥=0   (4.4) 𝜒𝑖 = ∑ ∑ 𝑶𝒊(𝑥𝑖 , 𝑦𝑖)𝑤

𝑦𝑖=0
ℎ
𝑥𝑖=0  (4.5) 

The feature point density coefficient on an object 𝛿𝑖 is determined according 

to equation (4.6). Subsequently, the object with the highest coefficient 𝛿𝑖 is 

selected as the natural landmark in the original image. 

𝛿𝑖 =
𝜒𝑖

𝜒
    (4.6) 

 

Figure 4.1. The steps for recognizing natural landmarks. 
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4.3. Determining the position of the landmark in the environment 

4.3.1. The position of the wheelchair in the environment 

The kinematic equation relates 

Cartesian coordinates O(x,y) of the 

wheelchair in the coordinate system to 

the velocities of its two wheels, as 

shown in Figure 4.2. 

The wheelchair in Figure 4.2 

moves and orients itself by adjusting 

the velocities of the left wheel, vl(t), 

and the right wheel, vr(t). Using L as 

the distance between the wheels and θ 

as the angle between the frame axis and 

the horizontal axis, the coordinates x(t), 

y(t), and angle θ(t) at time t are 

determined as follows: 

[

𝑥̇(𝑡)

𝑦̇(𝑡)

𝜃̇(𝑡)

] = [
𝑐𝑜𝑠 𝜃 (𝑡) 0

𝑠𝑖𝑛 𝜃 (𝑡) 0
0 1

] [
𝑣(𝑡)
𝜔(𝑡)

]   (4.9) 

The coordinates of the wheelchair 

at time t = k + 1 are described as: 

 [

𝑥(𝑘 + 1)

𝑧(𝑘 + 1)

𝜃(𝑘 + 1)
] = [

𝑐𝑜𝑠 𝜃 (𝑘 + 1) 0

𝑠𝑖𝑛 𝜃 (𝑘 + 1) 0
0 1

] [

𝑑𝑟(𝑘+1)+𝑑𝑙(𝑘+1)

2
𝑑𝑟(𝑘+1)−𝑑𝑙(𝑘+1)

𝐿

] + [

𝑥(𝑘)

𝑧(𝑘)

𝜃(𝑘)
] (4.10) 

in which dr(k + 1) and dl(k + 1) represent the distances traveled by the right and 

left wheels from time k to (k + 1), respectively. 

4.3.2. Determining the position of the landmark 

Figure 4.3 depicts the positions of the wheelchair and landmarks in space, 

where the coordinates of the wheelchair in the 2D environment are (xW,yW), and 

the coordinates of the landmark in the camera space are (xLM,yLM). 

𝑥𝐿𝑀𝐺 = 𝑥𝑊 + 𝑑. 𝑐𝑜𝑠 𝛽𝐿𝑀𝐺  (4.11) 

𝑦𝐿𝑀𝐺 = 𝑦𝑊 + 𝑑. 𝑠𝑖𝑛 𝛽𝐿𝑀𝐺   (4.12) 

𝛽𝐿𝑀𝐺 = 𝛼 + 𝜃 − 90 (4.13) 

 

in which θ is the angle of the wheelchair's movement using equation (4.10). The 

angle of the landmark, α, is calculated as follows: 

𝛼 = {
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐿𝑀

𝑥𝐿𝑀
) , 𝑥𝐿𝑀 < 0

180 − 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦𝐿𝑀

𝑥𝐿𝑀
) , 𝑥𝐿𝑀 ≥ 0

    (4.14) 𝑑 = √𝑥𝐿𝑀
2 + 𝑦𝐿𝑀

2 (4.15) 

Once the landmark position is established, the index and coordinates of the 

landmark in the image are marked and stored in the database. 

 
Figure 4.2. A mobile wheelchair model with 

two differential wheels and two free caster 

wheels. 

 
Figure 4.3. Estimating the position of 

landmarks in 2D space . 
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4.4. The results of natural landmark recognition and data collection 

In the experiment, 

the wheelchair is 

equipped with an RGB-D 

camera and two encoders, 

as shown in Figure 4.4. 

Table 4.1 illustrates 

the performance of SIFT, 

SURF, and ORB 

detectors when extracting 

features from Figure 4.5. 

Figure 4.6 demonstrates 

the connectivity of 

keypoints of the objects in 

Figure 4.5, with keypoints 

dilation performed through 

various iterations. Figure 

4.7 describes an image 

containing object 

boundaries and feature frames. 

    

Figure 4.6. 

Representation 

of dilation 

with different 

iterations 

using a 3x3 

kernel. (a) One iteration (b) Five iterations (c) Ten iterations (d) Fifteen 

iterations 
 

    

Figure 4.7. 

Object 

contours 

and feature 

frames. 

(a) One iteration (b) Five iterations (c) Ten iterations (d) Fifteen iterations 

In Figures 4.8 and 4.9, the image recognition system shows objects at 

distances of 2m and 1m from the camera to the wall. Figure 4.9c demonstrates 

that the second object is selected as the landmark corresponding to the highest 

density δ2 = 0.85 compared to the other object. 

 
  

(a) RGB 
image 

(b) Image with 
key points 

Figure 4.4. Wheelchair 

with RGB-D camera, 

encoders, and computer. 

Figure 4.5. Objects with 

corner feature. 

Table 4.1. Feature extraction results using various 

methods. 

Detector Time Per 

Frame 

(ms) 

Time Per 

KeyPoint 

(ms) 

Number of 

Key Points in 

Frame 

SIFT [31] 31,08 0,07 426 

SURF [32] 17,55 0,08 230 
ORB [44] 3,74 0,002 1850 
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(a) Image with 

key points 

(b) Dilated image. (c) Feature frame (d) Objects image (e) Landmark 

image 

Figure 4.8. The process of landmark recognition in the laboratory at a distance of 2m from the 

camera to the objects. 

     
(a) Image with 

key points 
(b) Dilated image. (c) Feature frame (d) Objects image (e) Landmark 

image 

Figure 4.9. The process of landmark recognition in the laboratory at a distance of 1m from the 

camera to the objects. 

Figure 4.10 illustrates the IOU between two boxes: one encompassing the 

actual object and the other containing the landmark identified by the proposed 

algorithm. Table 4.2 presents the IOU at various distances. 

 

(a) Intersection of two boxes. 

 

(b) The IOU calculation. 

Figure 4.10. IOU for bounding boxes. 

Table 4.2. IOU at different 

distances. 

No. 1m 2m 3m 4m 5m 

1 0,86 0,83 0,72 0,56 0,68 

2 0,90 0,92 0,57 0,61 0,50 

3 0,91 0,83 0,53 0,55 0,48 
4 0,86 0,85 0,56 0,54 0,47 

5 0,89 0,91 0,55 0,63 0,60 

6 0,80 0,90 0,55 0,58 0,28 
7 0,80 0,80 0,57 0,49 0,56 

8 0,88 0,83 0,55 0,47 0,48 

9 0,86 0,86 0,55 0,55 0,60 
10 0,80 0,85 0,63 0,62 0,56 

Average 0,86 0,86 0,58 0,56 0,52 
 

Table 4.3 describes the experiment of detecting landmarks in Figure 4.11 

under various lighting conditions and at different distances. 
Table 4.3. IOU under different lighting conditions. 

Distance 

Standard lighting Low light Dark 

Landmar

k 1 

Landmark 

2 

Landmark 

1 

Landmar

k 2 

Landmark 

1 

Landmar

k 2 

1 m 0,84 0,86 0,82 0,85 0,84 0,86 

2 m 0,84 0,82 0,90 0,80 0,90 0,82 

3 m 0,77 0,59 0,70 0,50 0,51 0,45 
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Figure 4.11. 

Recognition 

of natural 

landmarks in 

a laboratory 

environment 

under 

different 

lighting 

conditions. 

The images of 

objects captured by 

the camera system 

at angles of 0o, 35o, 

and 45o are shown 

in Figures 4.12, 

4.13, and 4.14, 

respectively.  

(a) Landmark 1 

   
(b) Landmark 2 

 

    

Figure 4.12. 

Recognition of 

the natural 

landmark in 

the lab 

environment at 

the angle of 

0°. (a) Image with key 

points 

(b) Objects image (c) Landmark 

image 

(d) Bounding box 

with IOU ratio 
 

    

Figure 4.13. 

Recognition of 

the natural 

landmark in 

the lab 

environment at 

the angle of 

45°. 

 
(a) Image with key 

points 
(b) Objects image (c) Landmark 

image 
(d) Bounding box 

with IOU ratio 

Table 4.4 displays the average processing time for each step, while Figure 

4.15 showcases the outcomes of identifying landmarks in an indoor environment. 

    

Figure 4.14. 

Recognition of 

the natural 

landmark in 

the lab 

environment at 

the angle of 

30°. (a) Image with 

features. 

(b) Image of the 

objects. 

(c) The recognized 

landmark. 

(d) Bounding box 

with IOU ratio. 

Table 4.4. Processing time for landmark recognition of the proposed method. 

Stages of Implementation Figure 4.15a Figure 4.15c Figure 4.15e Figure 4.15g 

Feature extraction [ms] 2,90 3,77 2,89 4,77 

Object detection and landmark 
recognition [ms] 

37,10 37,93 36,12 41,16 

Total [ms] 40,00 41,70 39,01 45,93 
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Figure 4.15. 
Natural 

landmarks 

detected from 
various areas. 

(a) Image frames on 

the wall in the 

corridor 

(b) Recognized 

landmark 

(c) Image frames 

on another wall in 

the corridor 

(d) Recognized 

landmark 

    
(e) Image frames on 

the wall of the lab 
room 

(f) Recognized 

landmark 

(g) Image frames 

on another wall 
of the lab room 

(h) Recognized 

landmark 

4.5. Results of landmark position 

In Figure 4.16, the relative error 

between the average measured distance 

and the actual distances of landmarks is 

depicted, each position being measured 

100 times. The next experiment 

involves determining the positional 

error of the wheelchair in 2D space, as 

shown in Figure 4.17. 

    
(a) Experiment 1 (b) Experiment 2 (c) Experiment 3 (d) Experiment 4 

Figure 4.17. Representation of the wheelchair's motion trajectory to pre-set positions. 

Positional errors of the 

wheelchair in three 

experiments (Figure 4.17a, 

4.17b, and 4.17c) are 

outlined in Table 4.5. Figure 

4.17d displays the actual trajectory (in green) and the reference trajectory (in red) 

of the wheelchair, while Table 4.6 details the outcomes of landmark position 

determination in various experiments. 

 
Figure 4.16. The relative distance of the 

detected landmarks measurement error. 

Table 4.5. Evaluation of wheelchair position error – Unit: cm. 

No. 
Ground 

Truth 

Actual 

Position 
|Δx| |Δy| 

1 (200,0; 500,0) (203,0; 502,0) 3,0 2,0 

2 (200,0; 200,0) (204,0; 201,0) 4,0 1,0 
3 (200,0; 100,0) (201,0; 99,0) 1,0 1,0 
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The method can 

be utilized to create an 

automated tool for 

labeling indoor 

landmark positions. 

Table 4.7 compiles 

studies on image 

object recognition and 

automatic acquisition 

of object location 

information. 
Table 4.7. Automatic labeling system for objects overview. 

Works Objects Object Detection 

Technique 

Dataset for  

Pretraining 

Processing 

Time 

Description of the  

Collected Dataset 

X. Chai [45] Doors, walls, 

ceilings, and floor 

Object segmentation Do not use 75 ms Landmarks in an 

indoor environment 

P. Du [46] Tables, chairs, 

and low ceilings 

YOLOv3 Millar Library - Objects with their 

longitude and latitude 

Apud Baca 

[47] 

Toys CNNs MS COCO 40 s A six-degrees-of-

freedom (6-DoF) 

posture of objects 

O. Deane 
[48] 

Mobile eye-
tracking data 

Mask R-CNN MS COCO 1,5 s Gaze coordinates 

García-

Aguilar [49] 

Vehicles EfficientDet D4 COCO - Objects with their 

coordinates in image 

Proposed 
Method 

Natural landmark Maximum feature 
density 

Do not use 41,66 ms Landmarks and their 
position in indoor 

environment 

 

CHAPTER 5: ELECTRIC WHEELCHAIR CONTROL MODEL 

INTEGRATING EEG SIGNALS AND CAMERA BASED ON MAP 

5.1. Virtual-real control model 

for an electric wheelchair based 

on a virtual 2D grid map 

5.1.1. The structure of the 

virtual-real control model for 

an electric wheelchair 

In this dissertation, a virtual-

real control model for an electric 

wheelchair is proposed to 

navigate the it to the desired 

destination [50], as illustrated in 

Figure 5.1. 

 
Figure 5.1. Hệ thống điều khiển thực - ảo cho xe 

lăn điện dựa trên bản đồ lưới 2D ảo. 

 

Table 4.6. Results of landmark localization based on wheelchair 

position – Unit: cm. 

Wheelchair 

position  

(xw, yw, θw) 

Distance to 

the 

landmark 

Actual 

landmark 

position 

Computed 

landmark 

position 

|Δx| |Δy| 

(30,0; 30,0; 90) 96,8 (60,6; 121,1) (63,1; 120,9) 2,5 0,2 

(30,0; 30,0; 45) 85,9 (90,7; 90,7) (92,2; 89,2) 1,5 1,5 

(40,0; 40,0; 60) 112,7 (120,0; 120,0) (119,5; 119,9) 0,5 0,1 

(40,0; 40.0; 30) 111,0 (120,0; 120,0) (128,6; 106,9) 8,6 13,1 

(80,0; 40,0; 120) 89,1 (40,0; 120,0) (38,7; 119,0) 1,3 1,0 

(60,5; 60,5; 90) 94,4 (85,0; 151,4) (82,4; 152,3) 2,6 0,9 

(324,8; 116,6; 45) 207,0 (495,2; 124,2) (511,1; 206,9) 15,9 7,3 
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5.1.2. Virtual 2D grid map. 

Figure 5.3 depicts the 

virtual 2D grid map consisting 

of m×n grid cells in the indoor 

environment that the 

wheelchair can traverse to 

reach the destination. 

 
(a) Environment 

grid map with 
real obstacles 

and cells 

 
(b) Occupied 

cells related to 
the real obstacles 

 
(c) Virtual 2D grid 

map with black 
occupancy cells 

Figure 5.3. The 2D grid map of the real environment. 

5.1.3. Graphical user interface for selecting the destination 

Figure 5.4 depicts the 

collection, processing, and 

classification of EEG signals for 

executing control commands 

related to the user interface [39, 

40, 51]. Figures 5.5 and 5.6 

display the graphical user 

interface. 

  
Figure 5.5. User interface for selecting the 

desired destination. 
Figure 5.6. User interface selected the 

desired destination “Bed Room” using EEG. 
5.1.4. The DQNs model plans the optimal path for the wheelchair 

Positions on the 2D grid map include three types: obstacle positions So, free 

space positions Sf, and the target destination Sg. At each time step t, the 

wheelchair is at position St and needs to choose an action from a predetermined 

set of actions. Furthermore, after each action, the wheelchair will move from the 

current position St to a new position St+1 at time (t + 1) and then the reward 

received after each action is R(st,at) є [-1,1]. The policy π for position St will 

select an action to maximize the total reward Q obtained by the wheelchair. 

𝜋(𝑠𝑡) = 𝑎𝑟𝑔 max
𝑖=0,1,…,𝑛

𝑄(𝑠𝑡, 𝑎𝑖)  (5.2) 𝑄(𝑠𝑡, 𝑎𝑡) = 𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾. max
𝑖=0,1,…,𝑛

𝑄(𝑠𝑡+1, 𝑎𝑖) (5.3) 

with Q(st,ai) being the reward when performing action ai at position St; n is the 

number of actions; st+1 is the next state; and γ is the discount factor. 

To approximate Q(st, at), the FWNN takes the position of the wheelchair on 

the grid map as input, and its output is a Q-value vector. Additionally, Qi is the 

approximate value of Q(st,ati) for each action ati. When the neural network is 

trained sufficiently and accurately, it will be used in the optimal path planning 

model to select the policy π as the following equation: 

𝜋(𝑠𝑡) = 𝑎𝑗  (5.4) 𝑗 = 𝑎𝑟𝑔 max
𝑖=0,1,…,𝑛

𝑄𝑖 (5.5) 

where the value of j is determined based on the maximum Q-value. 

 
Figure 5.4.  Brain–computer interface process 

flow. 
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The purpose of the neural network is to accurately estimate the Q-values for 

various actions. Therefore, the objective function is: 

𝐿𝑜𝑠𝑠 = (𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑚𝑎𝑥
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))

2

 (5.6) 

In this study, the PreLU activation function, RMSProp optimization method, 

and MSE loss function are applied. 

5.2. Wheelchair localization using natural landmarks on a virtual 2D grid 

As the wheelchair navigates the real environment with pre-selected 

landmarks (Figure 5.8), the camera, when identifying these landmarks, provides 

their positions in relation to the camera's location (Figure 5.9) [52]. 

    
Figure 5.8. Samples of landmarks in the indoor 

environment. 

Figure 5.9. Coordinate system of 

the RGB-D camera. 
 

   
(a) Up direction of landmark (b) Down direction of landmark (c) Left direction of landmark 

  

Figure 5.10. Positions of the 

wheelchair with four 

directions. 
(d) Right direction of landmark (e) The 2D grid map and in the 

OXY plane 
 

Figure 5.10 illustrates the coordinate systems OXY in the 2D plane and the 

camera coordinate system O'X'Y'. In this study, the wheelchair's position in the 

2D plane according to the OXY coordinate system is calculated as follows: 

▪ The orientation of the landmark is 

"Up" in the 2D grid map: 

▪ The orientation of the landmark is 

"Down" in the 2D grid map: 
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𝑋𝑊 = 𝑋𝑀 − 𝑥𝑎

𝑌𝑊 = 𝑌𝑀 −  𝑧𝑎
  (5.9) 

𝑋𝑊 = 𝑋𝑀 + 𝑥𝑎

𝑌𝑊 = 𝑌𝑀 +  𝑧𝑎
  (5.10) 

▪ The orientation of the landmark is 

"Right" in the 2D grid map: 
𝑋𝑊 = 𝑋𝑀 −  𝑧𝑎

𝑌𝑊 = 𝑌𝑀 + 𝑥𝑎
  (5.11) 

▪ The orientation of the landmark is 

"Left" in the 2D grid map: 
𝑋𝑊 = 𝑋𝑀 +  𝑧𝑎

𝑌𝑊 = 𝑌𝑀 –  𝑥𝑎
  (5.12) 

with (XW, YW) being the coordinates of the wheelchair in the OXY plane; (XM, YM) 

is the coordinate of the landmark. 

Assuming the virtual 2D grid map is depicted as in Figure 5.10e, the 

wheelchair's position (XG, YG) in the virtual 2D grid map is: 

𝑋𝐺 = n − round (
𝑌𝑊

𝑎
)

𝑌𝐺 = round (
𝑋𝑊

𝑎
) − 1

    (5.13) 

5.3. Navigating a electric wheelchair in the real environment 

The wheelchair cannot move using simulated actions from DQNs due to its 

lack of a multi-directional control model. A new algorithm based on WAC is 

proposed for the wheelchair's movement, outlined in Figure 5.12. 

 
(a) Converter with the simulated inputs and the 

actual outputs 
 

(b) Representation of four control directions 

Figure 5.12. The representation of converting actual control commands from the simulation. 

The action of the wheelchair, represented by aw, and the new direction d' = 

a during movement in the real environment need to be determined, as follows: 

  

(5.14a) 

 

(5.14c) 

 

(5.14b) 

 

(5.14d) 

In equations (5.14a) – (5.14d), the wheelchair actions aw are defined as 

follows: aw = Forward (move forward), aw = Backward (move backward), aw = 

Left-Forward (turn left and then move forward), aw = Right-Forward (turn right 

and then move forward), aw = Stop (come to a stop). 

5.4. The obstacle avoidance method based on 3D environmental information 

The 2D map is converted from the 3D point map using geometric 

projections. The transformation of the 2D map is calculated as follows: 

𝑍𝑖𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑍𝑖𝑗) (𝑗 = 0, 𝑛)   (5.15) 

where the value Zimin is chosen corresponding to the value Yjmin depending on 
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the height of the wheelchair or the height of the wheelchair user. 

To find the pixel with the minimum depth Zmin (closest to the camera), 

compare the Zimin values in each column according to (5.16). The width av of the 

free space (v = 1,2, ...) in the 2D map (Xi, Zimin) is calculated as (5.17). 

𝑍𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑍𝑖𝑚𝑖𝑛) (𝑗 = 0, 𝑚)          (5.16) 𝑎𝑣 = |𝑋𝑘1 − 𝑋𝑘2|
  

(5.17) 

with the values k1 and k2 being the first and last elements on the X-axis of the vth 

gap at the column with depth Z ≥ Zmin. 

5.5. Experimental results of controlling the electric wheelchair 

5.5.1. Simulation of training pathfinding for the wheelchair based on the 

virtual 2D grid map 

Two virtual 2D grid maps of the indoor environment, depicted in Figure 

5.15, are created. White cells represent empty spaces, black cells signify 

obstacles, and red cells denote goal points. Table 5.1 details the parameters used 

during training. 

 

 

 

Training results for the DQNs model 

are shown in Figures 5.16 and 5.17. A 

comparison of training time and the number of episodes for the DQNs model 

with two activation functions is presented in Table 5.2. Table 5.3 details the 

number of episodes and training time for two environments (Small and Large). 

  
(a) The DQN model with PReLU activation (b) The DQN model with ReLU activation 

Figure 5.16. The comparison of Win rates when training the DQN model with two activation 

types in the case of the 8 × 11 grid map. 

 
(a) 8 × 11 grid map 

 
(b) 11 × 33 grid map 

Figure 5.15.  Training environment. 

Table 5.1. Training Parameters. 
Parameter Value 

Learning rate 0.00001 

Discount factor γ 0.8 

Exploration 0.1 
Mini-batch size 32 

Replay memory size 100 
Reward when moving outside the 

map Rb 

−0.8 

Reward of free space Rf −0.4 
Reward of obstacle Ro −0.75 

Reward of goal Rg 1 
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(a) The DQN model with PReLU activation (b) The DQN model with ReLU activation 

Figure 5.17. The comparison of Win rates when training the DQN model with two activation 

types in the case of the 11 × 33 grid map. 

Table 5.2. The Relative Performance of Proposed DQN Models. 

Environment Model 
Average no. of 

Episodes 

Average Training 

Time 

Small (8 × 11) 
DQNs – ReLU 601 36,3 s 

DQNs – PreLU 657 42,3 s 

Large (11 × 33) 
DQNs – ReLU 244879 6,05 h 

DQNs – PreLU 16015 35,24 m 

Bảng 5.3. The Relative Performance of Previous Models. 

Environment Model 
Average no. of 

Episodes 

Average Training 

Time 

Small (8 × 11) 
Traditional Q-Learning 60 198,4 s 

SARSA 75 223,9 s 

Large (11 × 33) 
Traditional Q-Learning 235 1,45 h 

SARSA 275 57,23 m 

5.5.2. Results of landmark recognition 

Figure 5.19 illustrates the identification of 4 landmarks using the SURF 

method. Table 5.4 shows the accuracy in landmark recognition, where SF is the 

number of feature points of the identified landmark, TF is the number of feature 

points matching the identified landmark, Rt is the accuracy rate, and Rf is the 

recognition error. 

    
(a) Matching features 

of landmarks 1 

(b) Matching features 

of landmarks 2 

(c) Matching features of 

landmarks 3 

(d) Matching features of 

landmarks 4 

    
(e) Landmark 1 (f) Landmark 2 (g) Landmark 3 (h) Landmark 4 

Figure 5.19. The representation of 4 different types of landmarks identified based on the 

landmarks stored in the database. 
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Table 5.4. Accuracy of the identified landmarks using the SURF method. 
Figure Identification 

time (ms) 

SF TF Rt 

(%) 

Rf 

(%) 

5.19a 370.6 206 190 92,2 7,8 
5.19b 320.4 64 58 90,6 9,4 

5.19c 296.9 18 13 72,2 27,8 

5.19d 228.0 30 26 86,7 13,3 

5.5.3. Determining the wheelchair's position on the virtual 2D grid map 

based on landmarks 

Figure 5.20 illustrates distance measurement accuracy from the camera to 

the landmarks, while Figure 5.21 shows absolute error in distance measurement 

from the camera to the landmarks at varying distances along the vertical axis. 

 
Figure 5.20. Absolute error of the distance 

Xa measurement from the camera to the 

landmarks at different locations 

 
Figure 5.20. Absolute error of the distance 

Za measurement from the camera to the 

landmarks at different locations 
The experiment took place in the environment depicted in Figure 5.22, with 

Figure 5.23 illustrating the wheelchair positions. Table 5.5 presents the results of 

wheelchair localization on the 2D grid map. 

      
(a) Real 

environment 
(b) 2D grid 

map 
(a) The 1st 
position 

(b) The 2nd 
position 

(c) The 3rd 
position 

(d) The 4th 
position 

Figure 5.22. The indoor 

experimental environment. 

Figure 5.23. Four positions of the wheelchair on the 2D 

grid map with the landmarks. 

Table 5.5. Accuracy of positioning the wheelchair. 

No. Real 

position  

(X0,Y0) 

Calculated 

position  

(XW,YW) 

|Xw-X0| 

(cm) 

|Yw-Y0| 

(cm) 

Position on 

2D grid map 

(XWG,YWG) 

Wheelchair 

direction on 

2D grid map 

1 (180, 720) (182, 718) 2 2 (2,1) Up 

2 (60, 480) (58, 477) 2 3 (4,0) Up 
3 (600, 660) (596, 665) 4 5 (2,4) Right 

4 (480, 540) (474, 538) 6 2 (3,3) Right 

Figure 5.24 depicts wheelchair and landmark positions, while Table 5.6 

shows the results of wheelchair localization using 3 landmarks. [53]. 
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Figure 5.24. Positions of the wheelchair on the 2D grid map 

with 3 landmarks (yellow). 
 

 5.5.4. The wheelchair moves to the desired destination based on the virtual 

2D grid map 

The electric wheelchair, with an RGB-

D camera system and other devices (Figure 

5.25), undergoes experimentation in the 

depicted environment (Figure 5.26). 

Figure 5.27 depicts the user-controlled 

path of the wheelchair using EEG signals 

[51]. The wheelchair's path in automatic 

mode is shown in Figure 5.29. The control commands are described in Table 5.7. 

 
(a) The path of the green-arrow trajectory 

is simulated using DQNs 

Table 5.7. The wheelchair control commands are 

converted from simulated commands. 

 

  
(a) Wheelchair 

at the position 
(3,3) 

(b) Wheelchair 

at the position 
(3,2) 

Table 5.6. Accuracy of positioning the wheelchair 

using 3 landmarks. 
No. Real 

position 

(X0,Y0) 

Calculated 

position 

(XW,YW) 

Xw-X0| 

(cm) 

|Yw-Y0| 

(cm) 

1 (480, 540) (489, 564) 8 14 
2 (360, 540) (348, 534) 12 6 

 

 
Figure 5.25.  The wheelchair 

navigation system installed with 

devices. 

  
(a) Real environment (b) Real environment 

  
(c) Real environment (d) The 2D grid map 

Figure 5.26. The experimental environment. 

 
Figure 5.27. The path of the 

wheelchair in the real environment. 

 

Vật 

cản 

  

 
Đường đi thực 

Đường tham chiếu 
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(b) Path of the wheelchair in the real 

environment using DQNs 

Figure 5.29. Representation of 

simulated and actual paths of the 

wheelchair using semi - automatic 

control. 

Figure 5.30a depicts three wheelchair 

trajectories. In Figure 5.30b, control 

commands are represented on the horizontal 

axis with values of -2, 0, 1, 2 corresponding 

to turn left, stop, go straight, and turn right 

commands. Another experiment is 

described in Figure 5.31. Figure 5.32 

illustrates the differences between the 

wheelchair control methods in the second 

experimental environment. 

  

Figure 5.30. 

Comparison of 

wheelchair 

movements 

between two 

control 

methods (semi 

- automatic 

control and 

manual 

control). 

(a) The actual paths of both control 

methods and the reference path 

(b) The control commands of both methods 

 

    
(a) Real environment (b) Real environment (c) Real environment (d) The route simulated 

using DQNs. 

Figure 5.31. The environment in the second experiment.  

  

Figure 5.32. 

Comparison 

of wheelchair 

movements 

between two 

control 

methods (semi 

- automatic 

control and 

manual 

control). 

(a) The actual paths of both control 

methods and the reference path 

(b) The control commands of both 

methods 

Figure 5.33 depicts an experiment with obstacles appearing on the pre-

planned path. 
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(a) Simulation path of the 

wheelchair without obstacle 

(b) Simulation path of the 

wheelchair with an obstacle 

(c) The actual path of the wheelchair in the 

case of both with and without an obstacle 

Figure 5.33. Motion of the wheelchair when there is an obstacle. 

CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

This dissertation successfully created an semi-automated electric wheelchair 

control system for indoor use by individuals with disabilities. It introduced two 

methods for classifying EEG signals based on eye movements in severely 

disabled individuals with functional eyes. The amplitude threshold method 

achieved high accuracy (97% and 99%) for different types of eye blinks. The 

CNN-1D model showed promising classification results (98.1%, 100%, 95.9%, 

100%, 98.1%), offering scalability for diverse eye movement activities based on 

user communication needs with the computer or control system. 

Moreover, the dissertation introduces the Maximum Feature Point Density 

method to identify natural landmarks and determine their positions based on the 

wheelchair's location and 3D information from a camera. It achieves the highest 

recognition accuracy (IOU > 0.8) within a distance of 2 meters from the camera. 

The landmark recognition process is fast, averaging 38.08 ms. Results indicate 

minimal errors in determining landmark positions—less than 3.0 cm horizontally 

and 2.0 cm vertically—when the camera-to-landmark distance is below 200 cm. 

In conclusion, the dissertation proposes a virtual-real control model for 

indoor electric wheelchairs, integrating the DQNs-PreLU model for virtual 2D 

grid map navigation, a landmark-based localization method, and a real-world 

wheelchair navigation control. This model significantly reduces training time, 

approximately 5 times less than Q-Learning and SARSA, and nearly 12 times 

less than DQNs-ReLU. It also allows parameter set saving for real-world 

applications. Experimentally, the wheelchair exhibits minimal position errors 

and autonomously reaches the desired destination with a continuous trajectory, 

distinguishing itself from user-controlled navigation. 

6.2. Future work 

Given the swift progress of embedded systems on compact, high-speed 

computing platforms, the dissertation's algorithms and methods can further be 

explored and incorporated into specialized devices. This helps optimize 

connectivity and compatibility with existing wheelchairs while reducing costs. 
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